grdimage

Project and plot grids or images

Synopsis

gmt grdimage grd_z | img | grd_r grd_g grd_b [ -Aout_img[=driver] ] [ -B[p|s]parameters ] [ -Ccpt ] [ -D[r] ] [ -E[i|dpi] ] -Jparameters [ -Gcolor[+b|+f] ] [ -I[intensfile|intensity|modifiers] ] [ -Jz|-Zparameters ] [ -K ] [ -M ] [ -N ] [ -O ] [ -P ] [ -Q[color] ] [ -Rwest/east/south/north[/zmin/zmax][+r][+uunit] ] [ -U[stamp] ] [ -V[level] ] [ -X[a|c|f|r][xshift] ] [ -Y[a|c|f|r][yshift] ] [ -fflags ] [ -nflags ] [ -pflags ] [ -ttransp ] [ -x[[-]n] ] [ --PAR=value ]

Description

grdimage reads a 2-D grid file and produces a gray-shaded (or colored) map by building a rectangular image and assigning pixels a gray-shade (or color) based on the z-value and the CPT file. Optionally, illumination may be added by providing a file with intensities in the (-1,+1) range or instructions to derive intensities from the input data grid. Values outside this range will be clipped. Such intensity files can be created from the grid using grdgradient and, optionally, modified by grdmath or grdhisteq. Alternatively , pass image which can be an image file (geo-referenced or not). In this case the image can optionally be illuminated with the file provided via the -I option. Here, if image has no coordinates then those of the intensity file will be used.

When using map projections, the grid is first resampled on a new rectangular grid with the same dimensions. Higher resolution images can be obtained by using the -E option. To obtain the resampled value (and hence shade or color) of each map pixel, its location is inversely projected back onto the input grid after which a value is interpolated between the surrounding input grid values. By default bi-cubic interpolation is used. Aliasing is avoided by also forward projecting the input grid nodes. If two or more nodes are projected onto the same pixel, their average will dominate in the calculation of the pixel value. Interpolation and aliasing is controlled with the -n option.

The -R option can be used to select a map region larger or smaller than that implied by the extent of the grid.

Required Arguments

grid | image

2-D gridded data set or image to be plotted (see Grid File Formats).

-Jparameters

Specify the projection. (See full description) (See cookbook summary) (See projections table).

Optional Arguments

-Aout_img[=driver]

Save an image in a raster format instead of PostScript. Append out_img to select the image file name and extension. If the extension is one of .bmp, .gif, .jpg, .png, or .tif then no driver information is required. For other output formats you must append the required GDAL driver. The driver is the driver code name used by GDAL; see your GDAL installation’s documentation for available drivers. Append a +coptions string where options is a list of one or more concatenated number of GDAL -co options. For example, to write a GeoPDF with the TerraGo format use =PDF+cGEO_ENCODING=OGC_BP. Notes: (1) If a tiff file (.tif) is selected then we will write a GeoTiff image if the GMT projection syntax translates into a PROJ syntax, otherwise a plain tiff file is produced. (2) Any vector elements will be lost.

-B[p|s]parameters

Set map boundary frame and axes attributes. (See full description) (See cookbook information).

-C[cpt|master[+h[hinge]][+izinc][+u|Uunit] |color1,color2[,color3,…]]

Name of a CPT file. Alternatively, supply the name of a GMT color master dynamic CPT [turbo, but we use geo for @earth_relief and srtm for @srtm_relief data] to automatically determine a continuous CPT from the grid’s z-range; you may round the range to the nearest multiple of zinc by adding +izinc. If given a GMT Master soft-hinge CPT (see Of Colors and Color Legends) then you can enable the hinge at data value hinge [0] via +h, whereas for hard-hinge CPTs you can adjust the location of the hinge [0]. For other CPTs, you may convert their z-values from meter to another distance unit (append +Uunit) or from another unit to meter (append +uunit), with unit taken from e|f|k|M|n|u. Yet another option is to specify -Ccolor1,color2[,color3,…] to build a linear continuous CPT from those colors automatically. In this case colorn can be a r/g/b triplet, a color name, or an HTML hexadecimal color (e.g. #aabbcc). If no argument is given to -C then under modern mode we select the current CPT.

-D[r]

GMT will automatically detect standard image files (Geotiff, TIFF, JPG, PNG, GIF, etc.) and will read those via GDAL. For very obscure image formats you may need to explicitly set -D, which specifies that the grid is in fact an image file to be read via GDAL. Append r to assign the region specified by -R to the image. For example, if you have used -Rd then the image will be assigned a global domain. This mode allows you to project a raw image (an image without referencing coordinates).

-E[i|dpi]

Sets the resolution of the projected grid that will be created if a map projection other than Linear or Mercator was selected [100]. By default, the projected grid will be of the same size (rows and columns) as the input file. Specify i to use the PostScript image operator to interpolate the image at the device resolution.

-Gcolor[+b|f]

This option only applies when a resulting 1-bit image otherwise would consist of only two colors: black (0) and white (255). If so, this option will instead use the image as a transparent mask and paint the mask with the given color. Append +b to paint the background pixels (1) or +f for the foreground pixels [Default].

-I[intensfile|intensity|modifiers]

Gives the name of a grid file with intensities in the (-1,+1) range, or a constant intensity to apply everywhere (affects the ambient light). Alternatively, derive an intensity grid from the input data grid grid via a call to grdgradient; append +aazimuth, +nargs, and +mambient to specify azimuth, intensity, and ambient arguments for that module, or just give +d to select the default arguments (+a-45+nt1+m0). If you want a more specific intensity scenario then run grdgradient separately first. If we should derive intensities from another file than grid, specify the file with suitable modifiers [Default is no illumination]. Note: If the input data is an image then an intensfile or constant intensity must be provided.

-M

Force conversion to monochrome image using the (old-style television) YIQ transformation. Cannot be used with -Q.

-N

Do not clip the image at the map boundary (only relevant for non-rectangular maps).

-Q[color][+zvalue]

Make grid nodes with NaN values transparent, using the color-masking feature in PostScript Level 3 (the PS device must support PS Level 3). Use +z to select another grid value than NaN. If input is instead an image then black pixels are set to be transparent; append an alternate color to select another pixel value to be transparent.

-Rxmin/xmax/ymin/ymax[+r][+uunit]

Specify the region of interest. (See full description) (See cookbook information).

For perspective view -p, optionally append /zmin/zmax. (more …) You may ask for a larger w/e/s/n region to have more room between the image and the axes. A smaller region than specified in the grid file will result in a subset of the grid [Default is the region given by the grid file].

-U[label|+c][+jjust][+odx[/dy]]

Draw GMT time stamp logo on plot. (See full description) (See cookbook information).

-V[level]

Select verbosity level [w]. (See full description) (See cookbook information).

-X[a|c|f|r][xshift]

Shift plot origin. (See full description) (See cookbook information).

-Y[a|c|f|r][yshift]

Shift plot origin. (See full description) (See cookbook information).

-f[i|o]colinfo (more …)

Specify data types of input and/or output columns.

-n[b|c|l|n][+a][+bBC][+c][+tthreshold] (more …)

Select interpolation mode for grids.

-p[x|y|z]azim[/elev[/zlevel]][+wlon0/lat0[/z0]][+vx0/y0] (more …)

Select perspective view.

-ttransp[/transp2] (more …)

Set transparency level(s) in percent.

-x[[-]n] (more …)

Limit number of cores used in multi-threaded algorithms (OpenMP required).

-^ or just -

Print a short message about the syntax of the command, then exit (NOTE: on Windows just use -).

-+ or just +

Print an extensive usage (help) message, including the explanation of any module-specific option (but not the GMT common options), then exit.

-? or no arguments

Print a complete usage (help) message, including the explanation of all options, then exit.

--PAR=value

Temporarily override a GMT default setting; repeatable. See gmt.conf for parameters.

Global Relief Datasets

By using grids named @earth_relief_res[_reg] we download global relief grids (or only the needed tiles) from the GMT server. Here, rr is a 2-digit integer specifying the grid resolution in the unit u, where u is either d, m or s for arc degree, arc minute or arc second, respectively. Optionally, you can append _g or _p to specifically get the gridline-registered or pixel-registered version (if they both exist). If reg is not specified we will return the pixel-registered version unless only the gridline-registered file is available. The following codes for rru and the optional reg are supported. These grids are saved in folders under your ~/.gmt/server/earth directory. Files and tiles are only downloaded once and are later accessed from ~/.gmt. You can clear your data via gmt clear data and you can pre-download data via gmt gmtget. Dimensions are listed for pixel-registered grids; gridline-registered grids increment dimensions by one.

Code

Dimensions

Reg

Size

Description

01d

360 x 180

g,p

128 KB

1 arc degree global relief (SRTM15+V2.1 @ 111 km)

30m

720 x 360

g,p

435 KB

30 arc minute global relief (SRTM15+V2.1 @ 55 km)

20m

1080 x 540

g,p

918 KB

20 arc minute global relief (SRTM15+V2.1 @ 37 km)

15m

1440 x 720

g,p

1.6 MB

15 arc minute global relief (SRTM15+V2.1 @ 28 km)

10m

2160 x 1080

g,p

3.4 MB

10 arc minute global relief (SRTM15+V2.1 @ 18 km)

06m

3600 x 1800

g,p

8.8 MB

6 arc minute global relief (SRTM15+V2.1 @ 10 km)

05m

4320 x 2160

g,p

13 MB

5 arc minute global relief (SRTM15+V2.1 @ 9 km)

04m

5400 x 2700

g,p

19 MB

4 arc minute global relief (SRTM15+V2.1 @ 7.5 km)

03m

7200 x 3600

g,p

33 MB

3 arc minute global relief (SRTM15+V2.1 @ 5.6 km)

02m

10800 x 5400

g,p

71 MB

2 arc minute global relief (SRTM15+V2.1 @ 3.7 km)

01m

21600 x 10800

g,p

258 MB

1 arc minute global relief (SRTM15+V2.1 @ 1.9 km)

30s

43200 x 21600

g,p

935 MB

30 arc second global relief (SRTM15+V2.1 @ 1.0 km)

15s

86400 x 43200

p

3.2 GB

15 arc second global relief (SRTM15+V2.1)

03s

432000 x 216000

g

6.8 GB

3 arc second global relief (SRTM3S)

01s

1296000 x 432000

g

41 GB

1 arc second global relief (SRTM1S)

Classic Mode Arguments

These options are used to manipulate the building of layered GMT PostScript plots in classic mode. They are not available when using GMT modern mode.

-K (more …)

Do not finalize the PostScript plot.

-O (more …)

Append to existing PostScript plot.

-P (more …)

Select “Portrait” plot orientation.

Imaging Grids With Nans

Be aware that if your input grid contains patches of NaNs, these patches can become larger as a consequence of the resampling that must take place with most map projections. Because grdimage uses the PostScript colorimage operator, for most non-linear projections we must resample your grid onto an equidistant rectangular lattice. If you find that the NaN areas are not treated adequately, consider (a) use a linear projection, or (b) use grdview -Ts instead.

Consequences of grid resampling

Except for Cartesian cases, we need to resample your geographic grid onto an equidistant projected grid. In doing so various algorithms come into play that projects data from one lattice to another while avoiding anti-aliasing, leading to possible distortions. One expected effect of resampling with splines is the tendency for the new resampled grid to slightly exceed the global min/max limits of the original grid. If this is coupled with tight CPT limits you may find that some map areas may show up with fore- or background color due to the resampling. In that case you have two options: (1) Modify your CPT to fit the resampled extrema (reported with -V) or (2) Impose clipping of resampled values so they do not exceed the input min/max values (add +c to your -n option). Note: If -n is not set and no CPT is given (or a master CPT is given or implied), we automatically set -nc+c.

Imaging Categorical Grids

Geographical categorical grids have values at the nodes that should not be interpolated (i.e., categories 4 and 5 should never be averaged to give a new category 4.5). However, imaging such grids using map projections requires a resampling onto an equidistant Cartesian lattice that usually will result in such blending. We do not know if a grid is categorical but if the CPT provided via -C is categorical we will override any -n setting you have chosen (perhaps implicitly) with -nn+a that turns on nearest neighbor gridding and turns off anti-aliasing. Alternatively, use grdview -T instead to plot individual polygons centered on each node.

Image formats recognized

We automatically recognize image formats via their magic bytes. For formats that could contain either an image or a data set (e.g., geotiff) we determine which case it is and act accordingly. If your favorite image format is not automatically detected then please let us know its magic bytes so we can add it.

Examples

Note: Below are some examples of valid syntax for this module. The examples that use remote files (file names starting with @) can be cut and pasted into your terminal for testing. Other commands requiring input files are just dummy examples of the types of uses that are common but cannot be run verbatim as written.

For a quick-and-dirty illuminated color map of the data in the file stuff.nc, with the maximum map dimension limited to be 6 inches, try

gmt grdimage stuff.nc -JX6i+ -I+d -P > quick.ps

To gray-shade the file hawaii_grav.nc with shades given in shades.cpt on a Lambert map at 1.5 cm/degree along the standard parallels 18 and 24, and using 1 degree tickmarks:

gmt grdimage hawaii_grav.nc -Jl18/24/1.5c -Cshades.cpt -B1 -P > hawaii_grav_image.ps

To create an illuminated color PostScript plot of the gridded data set image.nc, using the intensities provided by the file intens.nc, and color levels in the file colors.cpt, with linear scaling at 10 inch/x-unit, tickmarks every 5 units:

gmt grdimage image.nc -Jx10i -Ccolors.cpt -Iintens.nc -B5 -P > image.ps

To create an false color PostScript plot from the three grid files red.nc, green.nc, and blue.nc, with linear scaling at 10 inch/x-unit, tickmarks every 5 units:

gmt grdimage red.nc green.nc blue.nc -Jx10i -B5 -P > rgbimage.ps

To create a sinusoidal projection of a remotely located Jessica Rabbit

gmt grdimage -JI15c -Rd http://larryfire.files.wordpress.com/2009/07/untooned_jessicarabbit.jpg -P > jess.ps

See Also

gmt, gmt.conf, grd2kml, grdcontour, grdview, grdgradient, grdhisteq